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Graphene plasmons were predicted to pos-
sess ultra-strong field confinement and very
low damping at the same time, enabling
new classes of devices for deep subwavelength
metamaterials1,2, single-photon nonlinearities,3

extraordinarily strong light-matter interactions,4

and nano-optoelectronic switches. While all of
these great prospects require low damping, thus
far strong plasmon damping was observed,5–7 with
both impurity scattering8 and many-body ef-
fects in graphene5 proposed as possible expla-
nations. With the advent of van der Waals
heterostructures,9,10 new methods have been de-
veloped to integrate graphene with other atom-
ically flat materials. In this letter we exploit
near-field microscopy to image propagating plas-
mons in high quality graphene encapsulated be-
tween two films of hexagonal boron nitride (h-
BN).11 We determine dispersion and particularly
plasmon damping in real space. We find un-
precedented low plasmon damping combined with
strong field confinement, and identify the main
damping channels as intrinsic thermal phonons
in the graphene and dielectric losses in the h-
BN. The observation and in-depth understanding
of low plasmon damping is the key for the de-
velopment of graphene nano-photonic and nano-
optoelectronic devices.

Many interesting extraordinary optical and electronic
phenomena can occur in graphene–h-BN heterostruc-
tures, for example an altered electronic massless Dirac
fermion spectrum of graphene12 that is predicted to cause
plasmon ”morphing” with additional satellite plasmon
modes.13 Furthermore, h-BN itself is an interesting opti-
cal material as it is a natural hyperbolic material, sup-
porting tunable propagating phonon polaritons in the
bulk.14,15 Combining h-BN with graphene gives rise to
unconventional plasmon-phonon hybridization16 and this
hybrid system can be used for tailoring novel subwave-
length metamaterials.

Besides all of those exotic properties, h-BN can pro-
vide an exceptionally clean environment for graphene.
Recent advances in graphene device fabrication, exploit-

ing the unique properties of h-BN heterostructures pro-
duced by the polymer-free van der Waals assembling
technique, resulted in significantly less disorder. This
leads to the carrier transport mobility at room temper-
ature reaching its intrinsic limit dominated by thermal
phonon scattering.11

Here we exploit this new type of heterostructure,
sketched in Fig. 1a, and show an unprecedented low
damping and strong field confinement of graphene plas-
mons. Furthermore, we establish an excellent under-
standing of the graphene plasmon dispersion and damp-
ing for a wide range of carrier densities. In contrast to
earlier reports, we find much lower plasmon damping and
that impurity scattering does not play a significant role
in plasmon damping, pointing at very low intrinsic lim-
its on the plasmon damping in graphene. This shows
that graphene encapsulated in h-BN provides an excel-
lent platform for graphene plasmonic devices.

A topography image of the device is depicted in
Fig. 1b. The h-BN(7 nm)–graphene–h-BN(46 nm) stack
assembled by the polymer-free van der Waals assembling
technique11 lies on top of an oxidized silicon wafer, used
as a backgate. This stack is etched into a triangle and is
electrically side-contacted with metal electrodes.11

We image propagating plasmons with a scattering-type
scanning near-field optical microscope (s-SNOM), simi-
lar to several recent studies of graphene plasmons.5–7 A
schematic of the s-SNOM interacting with the graphene
device is shown in Fig. 1c. A continuous wave laser, with
tunable photon energy from 115 to 135 meV, is focussed
on a metallized atomic force microscope probe tip. The
tip apex optically couples to the device in the near-field.
The sharpness of the apex provides wavevector match-
ing between plasmon and incident photon.17 The inci-
dent light is partly converted to plasmons, which propa-
gate away from the tip as a circular wave with complex
wavevector qp. Plasmons return to the tip if they are
reflected by edges or defects. Returning plasmons are
partly converted to light and add to the out-scattered
light field. Interferometric detection of the scattered
light yields magnitude and phase as the complex-valued
optical signal ξopt. A scan of Re ξopt vs. tip position
near the graphene edge shows characteristic fringes due
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Figure 1: Device and plasmon imaging with s-SNOM. a,
Sketch of the layered heterostructure with a Si backgate, SiO2

layer, h-BN, graphene, h-BN, and a gold side contact. b, To-
pography image of the device. The triangle is two h-BN layers
encapsulating a graphene layer, contacted at two corners. The
blue outer area is etched. c, Simplified side-view schematic of
the s-SNOM measurement including probe tip, excitation, and
detection. Plasmons are launched radially from the tip. The
color map shows the simulated in-plane component of the elec-
tric field of a dipole source oscillating at a photon energy of
116 meV coupling to graphene plasmons. The simulated field
confinement of the plasmon in the out-of-plane direction of
20 nm at full width half maximum can be seen on the right.
d, s-SNOM optical signal from two-dimensional scan of tip po-
sition, near the graphene edge at room temperature (dashed
line). Edge-reflected plasmons appear as interference fringes.

to the varying field of the reflected plasmon, interfering
with the local response.5,6 Figure 1c shows these fringes
measured near a straight edge in our device. Since the
plasmon returns to the tip after travelling twice the tip-
edge distance, the spacing between fringes is λp/2, where
λp = 2π/Re qp is the plasmon wavelength.5,6

Due to the encapsulation of the graphene, our de-
vice possesses only small intrinsic doping and a uniform
doping distribution with a small density of electron-hole
puddles.18 This enables us to study the optical response
for a wide range of carrier densities ns, including features
near the charge neutrality point, by applying a backgate
voltage Vg. In Fig. 2a we tune the plasmon fringes in
both wavelength and amplitude and show that λp de-
pends strongly on ns. With decreasing carrier density the
fringe visibility decreases, as the wavelength of plasmons
becomes shorter. The tip cannot couple to plasmons with
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Figure 2: Optical signal and plasmon wavelength depen-
dence on carrier density and photon energy. a, s-SNOM
optical signal from scan of tip position perpendicular to
the graphene edge (dashed line) and gate voltage, showing
gate-dependence of plasmon fringes at a photon energy of
h̄ω = 116 meV. b, Change in complex optical signal away
from the edge (blue, from a) with respect to gate voltage,
compared to theoretical local conductivity for ideal graphene
(red).4 c, Plasmon wavelength dependence on carrier density.
d, Dependence on frequency, at ns = 7.4× 1012 cm−2. Shaded
orange regions indicate the h-BN frequency bands in which
propagating phonon polaritons can exist. In both c and d,
crosses show the extracted experimental values and the red
background color plot shows the imaginary part of the Fresnel
reflection coefficient (see Methods). The electronic intraband
Landau damping region is shaded green.

an arbitrarily short wavelength due to the non-zero tip
radius17 and their confinement in the top h-BN layer.

While changing ns we also observe changes in the lo-
cal optical response. This is most clearly seen in Fig. 2b
where we plot ξopt versus ns with the signal averaged
from 400 nm to 700 nm from the edge, where plasmon
interference effects are weak. With appropriately chosen
phase, ξopt is approximately proportional to the change
in complex valued graphene conductivity σ (Fig. 2b, see
Supplement). Near charge neutrality (small |ns|), Reσ
dominates which gives information about interband con-
ductivity. A corresponding peak in Re ξopt appears where
graphene is charge neutral, in this case near Vg ≈ −10 V.
With increasing carrier density Reσ (Re ξopt) decreases
due to Pauli blocking and Imσ (Im ξopt) grows due to
ballistic free carrier motion (Drude-like response). With
this technique we confirm the spatial uniformity of the
position of the graphene charge neutrality point and de-
duce that plasmons are hosted in graphene with uniform
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Figure 3: Extraction of plasmon damping. a, Black crosses
show the s-SNOM optical signal from Fig. 1d, averaged along
the edge, with a smooth background subtracted. A fit to equa-
tion (1) is shown as a red line. The shaded region shows the
decay envelope of the first term of equation (1). b, Same sig-
nal and fit as in a, multiplied by

√
x to isolate exponential de-

cay. The shaded regions show the exponential decay envelopes
of the first term of equation (1) for the measured damping
(γ−1

p = 25) and for the case limited only by electron scattering
from thermal phonons (γ−1

p = 70).

carrier density.
A detailed study of the plasmon wavelength depen-

dence on carrier density and frequency is shown in
Fig. 2c,d together with calculations of the graphene plas-
mon dispersion of the full system. The calculations in-
clude optical thin film effects which need to be included
due to the thin h-BN top film as well as graphene nonlocal
conductivity which needs to be considered due to the low
plasmon phase velocity (see Supplement). The measured
wavelengths show parameter-free agreement with these
electromagnetic calculations (red curves in Fig. 2c,d; de-
tails in Methods). The additional modes (in the orange
bands in Fig. 2d) that appear in the calculation are due
to the propagating phonon polaritons in thin h-BN.14,15

These phonon modes can hybridize with the graphene
plasmons, however the plasmons are effectively unhy-
bridized for the frequency range used in this study.

For our frequency range, the h-BN lattice is non-
resonant yet yields a highly anisotropic dielectric environ-
ment for the plasmon, which enhances its confinement.
The out-of-plane full width at half maximum confinement
of the plasmon electric field is calculated to be ∼ 20 nm
(Fig. 1c). We observe λp as low as 70 nm, 150 times
smaller than the free space light wavelength. This con-
stitutes a record high volume confinement of propagating
optical fields of ∼ 107 compared to the modal volume in
free space.

The capability to carry plasmons with such strong field
confinement and at the same time relatively low propaga-
tion damping is a unique property of graphene compared
to other plasmonic materials.19 In order to quantify the
propagation damping, we average linescans of the com-
plex ξopt perpendicular to the graphene edge at different
locations, and subtract the background (Fig. 3a). The
decay of the fringes away from an edge is due to a com-
bination of damping (Im qp > 0) and circular-wave geo-

metrical spreading. The oscillating signal of Fig. 3a fits
well with:

ξopt(x) = A
ei2qpx√

x
+B

eiqpx

xa
, (1)

with complex parameters A, B, qp and real a. The first
term is the returning field for a damped circular wave
reflected from a straight edge, with the plasmon travel-
ling 2x. The second term interferes with the first, pro-
ducing alternating fringe amplitudes. It arises because
plasmons are not only generated/detected beneath the
tip apex, but also weakly at the edge of the graphene.20

These plasmons travel only the tip-edge distance x and
therefore show twice the fringe spacing of the plasmons
generated/detected beneath the tip apex. As the geo-
metrical decay of the plasmon travelling the tip-edge dis-
tance only once is not known a priori, we allow for a vari-
able decay a ∼ 1. Nevertheless, because the exp(2iqpx)
component dominates and we can separate the exp(iqpx)
component with Fourier analysis, we can extract Im qp

unambiguously (see Supplement).
We define the inverse damping ratio γ−1

p =
Re qp/ Im qp as dimensionless figure of merit of propa-
gation damping. Fig. 3b shows the data multiplied with√
x to isolate the damping decay exp(−2 Im qpx), and

visually indicates the significance of γ−1
p —in this case,

γ−1
p ≈ 25. This is a significant improvement over the

γ−1
p ∼ 5 seen in studies of unencapsulated graphene on

silicon dioxide.5,6

From spatial damping, the plasmon amplitude decay
time τp can be calculated using the group velocity vg =
(dRe qp/dω)−1. In this case vg ≈ 106 m/s, coincidentally
the same as the Fermi velocity of graphene electrons (see
Fig. 2d). We find τp = (Im qp)−1/vg ≈ 500 fs, which is
remarkably long for strongly confined optical fields, and
an order of magnitude longer than the amplitude decay
time of subwavelength plasmons in silver, the metal with
the longest plasmon amplitude decay time.21

Plasmon damping can arise from a number of mecha-
nisms, most of which involve electron scattering. Elec-
trons can scatter from the disorder potential in the
graphene, created by extrinsic charge impurities8 and
the intrinsic thermal phonons.22 Electrons may also in-
elastically scatter by absorbing energy from the plas-
mon while emitting an optical phonon in the graphene or
in the substrate.22,23 Coherent many-electron scattering
processes have been calculated to play a minor role.24

Besides dissipating energy electronically, plasmons also
dissipate via dielectric losses in the environment.8,22

We investigate the role of the different damping mecha-
nisms by measuring the inverse damping ratio as a func-
tion of both ns and excitation frequency, and compare
the results in Fig. 4 with the calculated damping for var-
ious damping channels. The calculations are based on
the nonlocal conductivity σ(q, ω) evaluated at the plas-
mon wave vector q = qp and at the excitation frequency
ω. These calculations show that charge carrier scatter-
ing is strongly modified at high frequency and thus the
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Figure 4: Plasmon damping mechanisms. a, The in-
verse damping ratio as a function of carrier density at a
photon energy of 116 meV. b, The inverse damping ratio
as a function of excitation frequency at a carrier density of
7.4 × 1012 cm−2. Both a and b also show the theoretical in-
verse damping ratios due to graphene thermal phonons (blue
dashed curve), hypothetical charge impurities at concentration
nimp = 1.9 × 1011 cm−2 (green dash-dotted curve), dielectric
losses of h-BN (yellow dashed curve) and the combination of
graphene thermal phonons and dielectric losses of h-BN (red
curve).

effective electron scattering time for plasmons can differ
from the transport scattering time.8,22

Interestingly, we find experimentally that plasmon
damping is not affected by the carrier density. By com-
paring our data with the calculated inverse damping ra-
tios, we find that impurity scattering does not play a role
for plasmon damping, because it would lead to strongly
reduced damping for increasing ns, due to increasing
electrostatic screening8 (green dashed dotted curve in
Fig. 4). In contrast, plasmon damping by intrinsic ther-
mal phonons22 shows a much weaker dependence on ns

(dashed blue curve in Fig. 4). From quantitative compar-
ison, we find that (without fitting parameters) this intrin-
sic damping mechanism accounts for approximately half
the observed damping and thus we conclude that this is
the dominant intrinsic damping mechanism. Extensive
details on the calculations of plasmon damping due to
thermal phonon scattering are presented in Ref. 22.

Electronic damping alone cannot explain the observed
dependences, however dielectric losses provide an addi-
tional damping pathway. In particular, the dielectric
losses of the h-BN encapsulating the graphene may give
a significant contribution (yellow dashed curve in Fig. 4).
The combination of thermal phonon damping and dielec-
tric losses22 is in good agreement with our measurements
(red curve in Fig. 4). The dielectric losses used in our
model are consistent with recent measurements of thin
(<200 nm) h-BN flakes.15 Although the plasmon damp-
ing is affected by the dielectric losses, this work provides
strong evidence of the intrinsic limit graphene plasmon
inverse damping ratio of 40–70. This provides a upper

bound on Reσ ∼ 0.05πe2/2h at room temperature, much
smaller than previously reported.25,26

To conclude, we have demonstrated h-BN to be an
exceptional environment for graphene plasmons, yielding
high confinement and low levels of damping. In order
to further reduce damping and reach the ultimate limit
of plasmon propagation at room temperature—electron
scattering by thermal phonons22—it will be necessary to
reduce dielectric losses. The presented nano-photonics
device paves the way towards single-photon nonlinearities
with graphene plasmons,3 and provide an ideal platform
for many applications where tunability is crucial, such as
routing of plasmons27 and plasmon lenses.7,28

METHODS

The device geometry as well as the edge contacts were de-
fined using electron beam lithography and dry etching, in the
method of Ref. 11. The backgate capacitance density was es-
timated to be 6.7×1010 e cm−2 V−1, where e is the elementary
charge.

The s-SNOM used was a NeaSNOM from Neaspec GmbH,
equipped with a CO2 laser and cryogenic HgCdTe detector.
The probes were commercially-available metallized atomic
force microscopy probes with an apex radius of approximately
25 nm. The tip height was modulated at a frequency of
approximately 250 kHz with amplitude of 60–80 nm. ξopt
was obtained from the third harmonic interferometric pseudo-
heterodyne signal.5,6 For simplicity most figures only show
Re ξopt, however similar information appears in Im ξopt as de-
scribed by equation (1); all analysis (background subtraction,
fitting, etc.) was performed simultaneously on Re ξopt and
Im ξopt. The location of the etched graphene edge (x = 0)
was determined from the simultaneously-measured topogra-
phy.

The theoretical model of plasmon modes was calculated
in a classical electromagnetic transfer matrix method, with
a thin film stack of vacuum–SiO2(285 nm)–h-BN(46 nm)–
graphene–h-BN(7 nm)–vacuum. Thin film and nonlocal ef-
fects reduce Re qp by ∼ 5–20% compared to infinite dielectric
Drude model calculation (see Supplement). The zero tem-
perature random phase approximation (RPA) result29–31 was
used for the graphene nonlocal conductivity σ(k, ω). The per-
mittivity model of Ref. 32 was used for the h-BN films, modi-
fied to include dielectric losses based on Ref. 15. The damping
effect from dielectric losses shown in Fig 4 was also calculated
in this method, taking phonon linewidths of 6.5 meV in-plane
and 1.9 meV out-of-plane in the terminology of Ref. 15, and
their origin is discussed further in the Supplement. In Fig. 2c
and Fig. 2d, the color quantity plotted is the imaginary part
of the reflection coefficient of evanescent waves, evaluated at
the top h-BN surface. In these figures the damping has been
modified (e.g., reduced dielectric loss) to enhance the visi-
bility of modes—this does not significantly modify the mode
locations.

∗ These authors contributed equally † frank.koppens@icfo.es
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Nano Lett. 11, 3370 (2011).

5 Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S.
McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens,
G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N.
Lau, F. Keilmann, D. N. Basov, and A. H. Castro-Neto,
Nature 487, 82 (2012).

6 J. Chen, M. Badioli, P. Alonso-González, S. Thongrat-
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Supplementary Material: Highly confined low-loss plasmons in
graphene–boron nitride heterostructures

I. OPTICAL SIGNAL MODEL

Ideally, the tip interacts only with the local graphene underneath its apex, responding to the electric susceptibility
of the graphene and acting as a localized “point source” for exciting the plasma wave. The plasma wave spreads out
as a circular wave (2D radial wave), reflects off the nearby edge of the graphene and returns to the tip. Even in the
ideal lossless case, only a small part of this returning wave couples to the tip, due to geometrical decay. In practice,
there are further interaction pathways: the light path does not only interact with the tip but also directly with the
sample, and moreover the tip does not solely interact with the graphene under its apex.

This section describes the expected optical signal for a reflected circular wave, that has λp/2-period fringes as well
as the origin of the fringes with λp-period and their expected optical signal.

A. Signal in the bulk (local and launching response)

In Fig. 2b of the main text, we demonstrate that the change in optical signal approximately follows the ac conduc-
tivity of the graphene. It is instructive to consider why this is, and why the correspondence might not be perfect.

To exactly calculate the optical signal measured in the s-SNOM is a complicated matter, however to first approxima-
tion, the incoming and outgoing light are only coupled to the charge oscillations in the metallized tip. In the near-field
limit, these charge oscillations are electrically (capacitively) coupled to the device under study. In this picture, the
optical signal is essentially related to part of the tip’s self-capacitance that depends on tip-sample distance.

In the limit where the tip-sample system is non-resonant, the tip response can be calculated by some linear convo-
lution of the surface’s physical optical response. In Fourier space:S1

s(ω) ≈
∫
w(k)r(ω, k) dk, (S1)

where w(k) ∼ k2 exp(−2kR) is a bell-shaped weighting function with a peak at k ≈ 10/R, where R is the tip radius.
The surface optical response is embedded in r(ω, k), the evanescent reflection coefficient for transverse magnetic waves
having in-plane wavevector k and angular frequency ω.

In Sec. III we describe the general procedure to calculate r(ω, k) numerically, for an arbitrary stack. In the quasi-
electrostatic limit (k � c/ω), we can write a simple expression for a dielectric-conductor-dielectric stack.

r =
ε− ε0 − (ε+ ε0) α

1−αe
−2ηkxt

ε+ ε0 − (ε− ε0) α
1−αe

−2ηkxt
, (S2)

Here, the upper dielectric is taken to have thickness t and the lower to be infinite thickness, and the 2D conductor
to be of zero thickness. As the dielectric (h-BN) is anisotropic with in-plane permittivity εxx much different from
out-of-plane permittivity εzz, we have defined the effective permittivity,

ε ≡
√
εxxεzz, (S3)

and the effective field confinement factor,

η ≡
√
εxx
εzz

, (S4)

which in our experimental frequency range are ε/ε0 ≈ 4.0–4.7 and η ≈ 2. The effect of the graphene is captured in
the parameter α, defined as:

α ≡ σ

2εωi
kx. (S5)

Fig. S1 plots the reflection coefficient for a typical frequency in our experiment. As k increases, the reflection
coefficient probes the optical response closer and closer to the surface. At very high k >∼ 1/(ηt) we only see the
response of the top dielectric, which has the form:

r(k →∞) = r∞ =
ε− ε0

ε+ ε0
. (S6)
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Figure S1: Dependence of the reflection coefficient on wave vector k. a) Comparison of the simple quasi-electrostatic result
(S2) for the BN-Gr-BN system, against the full electromagnetic calculation (Sec. III) that also includes the underlying SiO2.
The real part is shown as a solid line and the imaginary part as a dashed line. Here the frequency is a typical ω

2π
= 30 THz,

and for simplicity we have taken the conductivity of the graphene to be σ = 10−4i S, which corresponds to a carrier density of
ns ≈ 2.6 × 1016 m−2 The filled-in curve shows the weighting function w(x). b) Influence of varying the conductivity on (S2). The
conductivity variation here ranges from a higher carrier density (ns ≈ 5.0 × 1016 m−2 for orange curve) to zero carrier density
(black curve). For small kx values it is apparent that the shift in r is proportional to −σ/i.

In our case r∞ ≈ 0.6. As k is lowered, we meet at some point the condition α ≈ 1, leading to a resonance due to the
denominators 1− α in Eq. (S2). This is essentially the location of the plasmon; in fact the precise condition is a pole
in r, which occurs slightly away from α = 1 due to the finite t effects. At the plasmon resonance, r shows a strong
peak in its imaginary part, indicating energy transfer to the plasmon. This high-k limit and the plasmon resonance
are however both weakly coupled to the tip, being in the tail of the function w(k).

The dominant contribution in our case comes from small k ≈ 30× 106 m−1, which is generally below the plasmon
resonance. Being below the plasmon resonance, we can make the approximation α� 1. Expanding (S2) to first order
in α, we find:

r(k � qp) ≈ r∞ − (1− r∞2)e−2ηkxtα. (S7)

From this expression it is apparent why changes in graphene conductivity appear proportionally in our optical signal
measurements. For fixed frequency, the permittivity parameters ε, η, r∞ are fixed. In essence, the tip can only couple
well to small kx (α� 1), and so regardless of further details of the tip coupling, the presence of the graphene causes
a small perturbation that is proportional to its local conductivity.

Beyond the simple argument presented above, a number of further influences should be considered, and so we do not
expect exact correspondence. First, it is only to first order in α that the signal should be proportional to conductivity.
Higher order terms certainly do contribute, e.g., our imaging of plasmons requires the plasmon pole to contribute to
the optical signal. The plasmon draws energy from the tip and carries it away, and this energy loss appears similarly
to dissipation (i.e., like Reσ or Im ε). As carrier density increases and the plasmon couples more efficiently, this energy
loss becomes stronger. Second, graphene can screen the influence of the dielectric layers underneath, in particular the
SiO2. This screening effect also changes with carrier density, and so the influence of the SiO2 is variable.

B. Edge-reflected fringes (λp/2-period contribution)

It is well known that in the far field, the amplitude of a lossless circular wave decays as ∼ 1/
√
r, where r is distance

from source. This ensures energy conservation on the wavefront, which has circumference 2πr. Mathematically, this
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appears in the 2D Helmholtz equation with point source at ~rs,

∇2E(~r) + q2E(~r) = −δ(~r − ~rs)

which has the solution

E(~r) = i
4H

(1)
0 (q|~r − ~rs|) (S8)

where H
(1)
0 (z) is the first Hankel function of order zero. In the case of plasmons, the wave field E may represent

charge density or out-of-plane electric field. Equation (S8) remains a solution also when q is complex, and describes

a decaying wave for Im(q) > 0. As expected, the asymptotic decay of the Hankel function is H
(1)
0 (z) ≈

√
2
iπz e

iz.

Now, consider the case where the tip is near a straight edge – the circular wave will reflect off this edge. Assuming
that the reflection coefficient is independent of the wave angle, then the reflected wave can be described using the
mirror-image method. Let the straight edge be defined by the line rx = 0, and let the tip be at location ~rtip = (x, 0).
Its mirror image is at (−x, 0) = −~rtip. The resulting total wave will be:

E(~r) = Elaunch
i
4H

(1)
0 (q|~r − ~rtip|) + Erefl

i
4H

(1)
0 (q|~r + ~rtip|)

The reflection coefficient Erefl/Elaunch is not necessarily unity. It is expected to be phase shiftedS2 and also its
magnitude will be smaller than unity due to energy loss from light emission and scattering at the edge.

We have used the s-SNOM in interferometric mode and so the measured signal is proportional to this complex
field.S3 Ideally, the out-scattered light depends only on the local coupling to E(~rtip), and so s ∝ E(~rtip). The field
from the first term (launched wave) forms part of the bulk signal. The second term adds to the bulk signal and
generates the interference fringes. We thus expect:

ξ(x) = ξbulk +AH
(1)
0 (2qx),

where ξbulk collects together all contributions that would already occur away from the edge – local response, plasmon
launching, etc., and, the complex coefficient A collects together factors of reflection, in-coupling, out-coupling, etc.

C. Edge-launched fringes (λp-period contribution)

Broken translational symmetry at the edge provides for matching the small photon wavevector with the large
plasmon wavevector. As a simple model, one can think of the wave E(x) being launched by an oscillating electric
field at the edge.S4 This produces a plane wave plasmon without additional geometrical decay:

E(~r) ∼ Eedgee
iqprx , (S9)

so that a contribution proportional to Eedgee
iqpx is added to ξopt(x). This is the case for plasmons being launched

directly by the illuminating laser spot which is effectively a plane wave on these nanometer length scales.
There are however other possibilities that lead to plasmons that travel only once the tip-edge distance x. One

possibility is the reverse of the above, that the plasmons launched at the tip are scattered to light at the graphene
edge. In this process the geometrical decay is less obvious: the plasma wave decays geometrically from the tip so that
the field at the edge decays as 1/

√
x, yet also the wave arrives in-phase over a larger section of the edge, tending to

cancel this decay.
Another possibility is that the near-field tail of the tip interacts with the edge and launches a plasmon there, a

plasmon which is then received at the tip after travelling x. This is similar to the far-field case, except the tip acts as
a field-enhancing mediator between light and edge. Here additional geometrical decay is expected because the electric
field of the near-field tail depends on the tip-edge distance. It is not clear what distance dependence this near-field
profile should take—monopolar, dipolar, or somewhere in-between. This profile would also be modified by lateral field
focussing by the h-BN. Again, the reverse process (launching at tip, then the long-ranged tail of the edge plasmon
field interacts with the tip) is also possible.

To allow for these various mechanisms we include a variable geometrical decay in this contribution to ξopt:

ξedge(x) ∝ eiqpx

xa +Ra
,
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Figure S2: Tip convolution effects make the topography edge appear away from the graphene edge. We define x = 0 to occur
when the tip is centered directly above the graphene edge—this is the situation depicted in the third panel.

where R is the tip apex radius, included to limit the divergence in this expression. In the picture of plasmon plane
wave launching at the edge, this would correspond to taking a distance-dependent edge field in Eq. (S9)

Eedge(x) ∝ 1

xa +Ra
.

The optical signal then shows the period of an edge-launched plane wave, but with additional geometrical decay whose
origin is unclear.

II. FRINGE FITTING (PARAMETER EXTRACTION)

In order to extract parameters, such as propagation length, from the fringe signal, we need an accurate model of
the expected signal for a given amount of damping. Based on the previous section, we have a decent model for the
decay of fringes away from the edge:

ξopt(x) = ξbulk(x) +AH
(1)
0 (2qpx) +B

eiqpx

xa +Ra
(S10)

where the fitting parameters are complex A, B and qp, and real a. The tip radius is fixed to R = 25 nm.
There are some complications that prevent us from direct fitting of the raw data:

• The location of the edge, x = 0, needs to be detected in some way.

• The background part of the signal, ξbulk(x), is not known a priori and we see clear signs of spatial variations.
Fortunately, these variations (due to carrier density gradients) appear to be gradual.

• The model in Eq. (S10) does not necessarily hold for small values of x. For the first fringe, the tip coupling
mechanism may become very different than when the tip is over the bulk. Direct fitting of the data with equal
residuals weighting is not suitable in this case.

The edge we detect from the topographic data of the s-SNOM apparatus, taking into account tip convolution effects.
To avoid biases from the unknown ξbulk and the unknown first-fringe behaviour, we subtract a smooth background
from the signal/model, and then perform fits in a transformed version of the signal/model. In the following we describe
this procedure in great detail.

A. Detection of graphene edge location

In separating out the contributions from geometrical decay from exponential decay, it is important that the location
of x = 0 (the graphene edge) has been determined with accuracy. An error in this determination leads to error in the
extracted damping.

We have chosen to use our topographic data to determine this edge location. It is well known that tip convolution
artifacts result in modified appearances of sharp edges in scanning probe microscopy. We assume that our physical
etched edge is sharply vertical as illustrated in Fig. S2, such that the rounding and sloping apparent in the topographic
signal is purely due to the AFM tip convolution (Fig. S2). As a result, the edge is located directly beneath the point
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Figure S3: Topographic signal from measurement (blue crosses) with the interpreted actual topography underneath. The
graphene (dashed line) is assumed to terminate at the end of the round feature, since this round feature is interpreted as a tip con-
volution effect.

where the rounding convolution ends, illustrated in Fig. S3. With the chosen edge-detection algorithm it is only
possible that the graphene edge is actually further on the left in Fig. S3 which would lead to an underestimation of
our extracted inverse damping ratios. Note that even if the edge were not strictly vertical, the error in x would be on
the order of a few nanometers since the graphene lies only 7 nm under the surface.

B. Background subtraction

Since ξbulk(x) is not known a priori, we can only estimate it from the dataset itself. After discarding the data for
x < 0, we estimate ξbulk(x) by smoothing the measured ξopt(x). The difference,

δξopt(x) = ξopt(x)− ξsmooth(x) (S11)

should then be free of influence from the unknown ξbulk.
Background subtraction always results in removal of some of the desired signal, and is a well known source of

statistical bias. In this case, background subtraction leaves transient artifacts near x = 0 due to the abrupt termination
of the signal, and also selectively removes part of the fringes depending on their period (i.e., affecting more the λp-
period fringes than λp/2-period fringes). In order to give a fair comparison, we apply the same background subtraction
procedure to the models used in the fit.

C. Complex Hankel Transform

Our goal is to access the asymptotic decay away from the edge, where we suppose tip coupling details are captured
in the position-independent parameters A, B, a. Close to the edge, such as with the first fringe, the tip coupling
details are not necessarily this simple. To this end, we perform fitting not in flat δξopt(x) space but rather in a
transformed δξopt(x), in effect de-emphasizing the weight of the signal near the edge. One possible approach here
would be to take a Hankel transform of the δξopt(x); the Hankel transform is analogous to a Fourier transform, but
more appropriate for circular symmetry, and it naturally gives stronger weight to a larger distance from origin. The
Hankel transform is however only a real transform, and does not mix together the real and imaginary parts of δξopt(x)
in a convenient way.

We therefore use a “complex Hankel transform” of the following form:S5

T (k) =
1

2

∫ ∞
0

x[H
(1)
0 (kx)]∗δξopt(x)u(x) dx. (S12)

This transform has the desirable property that eiqx-type wave will transform to a peak near +q, and a e−iqx wave will
transform to a peak near −q. Note that unlike the proper Hankel transform, this transform is not simply invertible,S6

however it is linear and successfully distinguishes +q and −q waves. The function u(x) in Eq. (S12) is a “window”
function, used to select an appropriate range including sufficient fringes but without too much influence from noise.
We use the window u(x) = 1− sin2(π2x/L) which produces a smooth cutoff as x approaches L, with L = 1 µm.

After applying Eq. (S12) to our background-subtracted and windowed fringes, we observe a function with two strong
peaks (Fig. S4), one peak at qp corresponding to processes where the plasmon travels x, and the other peak at 2qp
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when the plasmon travels 2x. Note the absence of peaks at negative k, which confirms that we retrieve the phase of
the light signal correctly and that the plasmons have positive group velocity. The peak widths in Fig. S4 are related
to the decay, though also affected by our choice of background subtraction and windowing procedures. To obtain
a fair comparison we can calibrate these peaks against a model with known decay. What we do is to perform the
same background subtraction, same windowing, and same transform on the model described in Eq. (S10). We then

fit the transformed model onto the transformed data, with equal weighting of the residuals
√
k(Tdata(k)− Tmodel(k))

for equally-spaced k values, over a specified k range around the peaks.
While the above procedure may seem to overcomplicate matters, we stress that we have only performed a linear

transformation on the data and model, and so we are effectively performing non-linear least squares on the source
data but with modified residual weights. The ultimate proof of this technique is the quality of fits (e.g., Fig. 3 of the
main text, which is very good for the range of parameters presented in the manuscript.). Besides being a reliable way
to extract damping information, this technique also allows us to measure accurately the wavelength of fringes that
are nearly invisible in the raw data. An additional benefit is that we can directly visualize (Fig. S4) that there are not
additional components in the data as might correspond to 3qp, −qp, etc., thereby confirming that the interferometric
detection technique has precisely measured the light phasor.

III. MODE CALCULATIONS

We use the AC Maxwell equation for fields oscillating as exp(−iωt) in time,

~∇× (~∇× ~E) =
ω2

c2
( ~E + 1

−iωε0
~J), (S13)

with current given by

~Jdiel = −iω(ε− ε0) ~E

in the dielectrics (note ε is a rank-2 tensor in h-BN), and by the nonlocal 2D conductivity relation

~Jgr(ω, x, y, z) = δ(z − zgr)

∫∫
dx′ dy′ ~E(ω, x′, y′, zgr)σNL(ω, x− x′, y − y′)

in the graphene, where zgr is the height of the graphene and σNL(ω, x, y) is its nonlocal 2D conductivity function.

We neglect magnetic susceptibilities, whose bound currents would take the form ~Jmag = 1
iω
~∇× [(µ−1

0 −µ−1)~∇× ~E],
i.e., we take the materials to be non-magnetic with permeability µ = µ0. In fact, even if the materials were slightly
magnetic this would not influence the quasi-electrostatic limit described below.

We consider solutions that are plane waves along x and constant along y, i.e., varying as exp(ikxx + 0y). This
reduces the system to a one dimensional problem in z, which we solve using the transfer matrix method. There are
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two possible polarizations here: transverse magnetic (Ey = 0, Bx = 0, Bz = 0) and transverse electric (By = 0,
Ex = 0, Ez = 0). The tip couples essentially only to the transverse magnetic polarization, and plasmons only appear
in this polarization. We define the reflection coefficient r(ω, kx) for transverse magnetic waves as the ratio of Ez
components of the up-decaying wave (positive Im kz) to the down-decaying wave (negative Im kz) at the top surface,
with the condition that the wave is purely down-decaying at the bottom surface.

Bound propagating modes, such as the plasmon, appear in r(ω, kx) as a simple pole in the complex kx plane, with
a residue that is primarily real-valued. Considering damped modes with Re kx > 0, then for ordinary dispersion
(positive group velocity) this pole appears with Im kx > 0 and positive residue; for anomalous dispersion (negative
group velocity), the pole has Im kx < 0 and negative residue.

For obtaining compact analytic equations such as (S2) it is helpful to take the quasi-electrostatic approximation,

where the effects of electromagnetic induction are neglected. First we observe the relation ~∇ · ( ~E + 1
−iωε0

~J) = 0,

a consequence of taking the divergence of both sides of (S13). We then take the limit c → ∞ (that is, µ, µ0 → 0,

keeping ε intact) which implies ~∇ × (~∇ × ~E) = 0. This approximation is highly accurate when examining the near
field waves (at very high kx values past the light line, i.e., where kx � 1/

√
εµ).

A. Nonlocal conductance

The effects of 2D nonlocality are easy to include for plane waves, since in this case the convolution is converted
into a kx-dependent conductivity, σ(ω, kx) =

∫∫
dx dy eikxxσNL(ω, x, y). The quantity σ(ω, kx) is known analytically

at zero temperature, in the random phase approximation, allowing fast numerical evaluation.S7 Although early works
emphasized the influence of nonlocality,S8,S9 we note a subtle point which is that for suspended graphene (in a vacuum
dielectric) the primary nonlocal effect is the interband nonlocality, whereas for graphene in a dielectric and at low
frequencies the dominant nonlocal effect is intraband.

We note that this intraband nonlocal effect is not particularly quantum nor special to graphene, but appears in all
plasma physics. For example, in the classical quasi-electrostatic plasma (Langmuir wave), microscopic thermal effects
give a similar nonlocal conductivity. For small k the classical nonlocal conductivity takes the form

Imσclassical(ω, k) ≈ ω−1e2 n

m
[1 + 3k2v2

th/ω
2],

where vth =
√
kT/m is the thermal speed. The nonlocal effect can be seen as coming from pressurization effects, in

the fluid plasma model. From the point of view of kinetic theory (e.g., Vlasov equation) it is a consequence of near-
resonant particles that are travelling close to the wave phase speed ω/k, and is closely related to the Landau damping
described below. In a bulk plasma, the plasma condition is ωp = σ/(iε), where σ is the free-electron conductivity and
ε is the background permittivity from vacuum and bound electrons (ε = ε0 in a gas plasma). The nonlocal energy
transport increases the imaginary part of conductivity and therefore increases the frequency of the plasma, as seen in
the resulting Bohm-Gross dispersion, ω2

p ≈ e2 n
mε0

+ 3k2v2
th.

For the degenerate graphene electron gas we have for small k and for ω � kFvF,

Imσgraphene(ω, k) ≈ ω−1e2(2vFkF/h̄)[1 + 3
4k

2v2
F/ω

2],

where kF =
√
πns is the Fermi wavevector. Again, this nonlocality can be interpreted as a near-resonant effect of

electrons whose speed (vF) and direction are close to the wave phase speed ω/k. In a diagrammatic perturbation
theory picture this corresponds to virtual intraband excitations. The nonlocality occurs regardless of whether k is
comparable to kF. The corresponding 2D plasma condition is ωp = 1

2qpσ/(iε), and so here too the nonlocal energy
transport increases the imaginary part of conductivity and therefore increases the frequency of the plasma, or for
fixed frequency it lowers qp. In fact the full expression for σgraphene contains a diverging conductivity as k approaches
ω/vF. This prevents the plasmon from having a lower phase velocity than vF.

The striking difference between the classical thermal plasma and the graphene plasma is the effect of Landau
damping. In the thermal plasma, the thermal distribution implies that some electrons have a velocity as high as the
plasma phase velocity. They ‘surf’ the wave, accelerating to higher speeds and drawing energy out from the plasma.
Thus, nonlocal effects in a thermal plasma are rarely observed because Landau damping turns on at the same time.

For plasmas in degenerate electron systems such as metals, low-temperature doped semiconductors, or doped
graphene, it is possible to see the nonlocality without Landau damping, since the Landau damping only turns on
after the plasmon wavevector qp passes above ω/vF. This is because the electrons have a sharp cutoff in their
speed distribution, with few electrons travelling faster than vF. Still, the nonlocality can be difficult to access: in
semiconductors for example the Fermi velocity is very low, and so the required qp to observe nonlocality are quite high.
In graphene, the high Fermi velocity allows easier observation of nonlocality in plasmonics. This is most apparent
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Figure S5: (a) Drude model for graphene conductivity and simple effective permittivity for h-BN surrounding the graphene. (b)
Drude model for graphene conductivity and thin film effects for h-BN surrounding the graphene. (c) Non local RPA for graphene
conductivity and thin film effects for h-BN surrounding the graphene. Scattering time τ = 500 fs, ns = 7.37× 1012 cm−2.
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Figure S6: (a) Drude model for graphene conductivity and simple effective permittivity for h-BN surrounding the graphene. (b)
Drude model for graphene conductivity and thin film effects for h-BN surrounding the graphene. (c) Non local RPA for graphene
conductivity and thin film effects for h-BN surrounding the graphene. Scattering time τ = 500 fs, ns = 7.37× 1012 cm−2.

with a high permittivity environment around the graphene, since for frequencies below kFvF this drives the plasmon
into the intraband nonlocal regime before it is affected by the interband absorption.

B. Dispersion relation comparison

In the simple Drude model the local response conductivity is given by the following expression:S7

σ(ω, τ, ns) =
2e2vF

h

√
πns

1/τ − iω
(S14)

In Fig. S5 and Fig. S6 we compare different dispersion models. In Fig. S5,S6a we show the result for a simple Drude
conductivity for the graphene as in (S14) and the simple graphene plasmon relationS10 qp ≈ 2ωε(ω)i/σ(ω), where ω
is the angular frequency of the excitation light, ε is the effective permittivity of the dielectric environment – see (S3)
above – and σ is the local conductivity as defined in (S14). Both top and bottom h-BN layer are considered to be
semi-infinite. Note that here no propagating phonon polariton modes exist inside the reststrahlen bands marked in
orange.S11
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A significantly improved fit is achieved by using the Drude model but including thin film effects of the 46 nm
bottom and 7 nm top h-BN in Fig. S5,S6b. Due to the thin film effects propagating phonon polariton modes exist in
the reststrahlen bands. These modes will be discussed elsewhere.

Including the nonlocal conductivity in Fig. S5,S6c we achieve an even better fit, especially for higher wavevectors
where nonlocal effects start playing a more significant role. Also in the carrier density dependence in Fig. S6c a
significantly improved fit is achieved as compared to not including nonlocal effects in Fig. S6b.

IV. H-BN PERMITTIVITY MODEL

Hexagonal boron nitride is an anisotropic material and so its permittivity ε is a tensor. Choosing x, y to be the
in-plane directions and z to be the out-of-plane direction (“c-axis”), by symmetry the permittivity must be diagonal
in a perfect h-BN crystal:

ε =

εx 0 0
0 εy 0
0 0 εz


with components εx = εy 6= εz.

As with many dielectric materials, the permittivity of h-BN is frequency dependent with resonances due to internal
polar degrees of freedom,

εl(ω) = εl(∞) + sv,l

ω2
v,l

ω2
v,l − iγv,lω − ω2

, l = x, y, z. (S15)

This degree of freedom is a polar lattice vibration, and its permittivity contribution involves real-valued constants sv,l

(dimensionless coupling factor), ωv,l (normal frequency of vibration), and γv,l (amplitude decay rate). Observe that
sv,l gives the DC permittivity contribution of the polar lattice distortion, so that in the case of a single vibrational
mode as in (S15), one has sv,l = εv,l(0) − εv,l(∞). We neglect nonlocal effects in the permittivity of h-BN as they
should only appear once k is comparable to the reciprocal lattice vectors, a regime that is two orders of magnitude
away from the experimental case.

In h-BN, it is theoretically expected that there are only three polar vibrational modes, one each for x, y, z.S12

The out-of-plane vibration (l = z) has significantly different values of sv,l, ωv,l, γv,l compared to the in-plane modes
(l = x, y). In practice, it is sometimes useful to include additional modes to fit the measured permittivity in disordered
crystals,S12 however here we consider ideal h-BN with one mode along each direction.

The permittivity (S15) completely characterizes the h-BN for optical studies at frequencies up to and including the
mid-infrared. For bulk h-BN this permittivity is known to produce interesting behaviour of electromagnetic modes
since Re εz ≤ 0 for one frequency band, and Re εx,Re εy ≤ 0 in another frequency band. Both frequency bands
contain:

• Transverse phonon polaritons near ωv,l. Near this frequency, the permittivity along l diverges to very large
values (Re εl ∼ ±100). For light polarized along direction l, a strong peak in reflectivity (near 100%) is observed
at this frequency.S12,S13

• Longitudinal phonon polaritons near ωL,l = ωv,l

√
εl(0)/εl(∞). At this frequency, εl passes close to 0. This

allows a purely electric oscillation that is longitudinal, i.e., electric field parallel with the phase velocity.S12

• Hyperbolic phonon polaritons for ωv,l < ω < ωL,l. In this frequency range, Re εl < 0 in direction l, yet Re ε
is positive along another direction. This results in a hyperboloidal constant-frequency surface of propagating
modes in k-space, rather than the usual ellipsoid that appears for most frequencies. This hyperboloid extends
to very high k (short wavelength) allowing propagating modes of very short wavelength.S13 The group velocities
of these confined modes are correspondingly low and are nearly perpendicular to their phase velocities.

These special frequency intervals are marked in Fig. 2 of the main text as orange bands: In the lower frequency band,
Re εz < 0 whereas Re εx,y < 0 in the higher frequency band. For thin h-BN films, the effects of the transverse and
longitudinal modes are somewhat diminished, yet the hyperbolic modes start to exhibit waveguidingS14 and have been
exploited to produce subwavelength resonant structures.S13

For the frequencies investigated in this study, Re ε is strictly positive and the most important aspect of (S15) is its
anisotropy and its dielectric loss. The overall permittivity, including its high anisotropy (with εx ≈ 9 and εz ≈ 2 in the
studied frequency range), is important for matching the measured plasmon wavelengths. Understanding the dielectric
loss is a crucial part of understanding our plasmon damping. The following subsections describe the parameter sets
we have considered and how dielectric loss may be modified in thin films of h-BN.
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Model l εl(∞) sv,l h̄ωv,l/meV h̄γv,l/meV

GeickS12 x, y 4.95 1.868 169.5 3.6
+ 0.209 95.1 3.4

z 4.10 0.530 97.1 1.0
+ 0.456 187.2 9.9

CaiS15 x, y 4.87 1.83 170.1 —
z 2.95 0.61 92.5 —

CaldwellS13 x, y 4.9 2.001 168.6 0.87
z 2.95 0.5262 94.2 0.25

Cai ”clean” x, y 4.87 1.83 170.1 0.87
z 2.95 0.61 92.5 0.25

Cai ”damaged” x, y 4.87 1.83 170.1 6.5
z 2.95 0.61 92.5 1.9

TABLE S1: Different permittivity models for hexagonal boron nitride. Note that the model of Geick et al. includes two vibra-
tional modes for each direction.

A. Parameters of h-BN permittivity and remarks

For reference, we list five permittivity parameter sets in Table S1. The first three models are from the existing
literatureS12,S13,S15 and the last two are hybrids that we have constructed. In future precision studies it may be
necessary to take into account (or exploit) the isotope effect of boron which could allow tuning of the resonance
frequencies by 3%, or to remove the dielectric loss that originates from the isotope inhomogeneity of natural boron.

The Geick et al. study was performed on a large h-BN sample, and the authours found it necessary to include an
additional vibrational mode for each direction, in order to fit their reflectance data. They attributed this necessity to
the large degree of axis misalignment among the crystallites, which would mix together the x and z permittivities.S12

The Cai et al. model is a theoretical calculation for perfect h-BN,S15 and results a plasmon dispersion that matches
closely to the experiment. The values of Cai et al. were used successfuly in modelling the propagating phonon
polaritons in Ref. S14 (see the supplement of that paper). This study does not address the expected dielectric losses.

Caldwell et al. present their values in the supplementary material of Ref. S13. This permittivity was inferred from
reflectance measurements on thin h-BN exfoliated films, originating from the same source as the h-BN films in our
study. The parameters obtained here were very similar to the Cai et al. values.

Cai “clean” and Cai “damaged” in Table S1 take the theoretical modes of Ref. S15 and incorporates empirical losses
based on Refs. S12 and S13. Cai “clean” uses the losses for pristine thick films of h-BN as measured in Ref. S13.
In Cai “damaged” we amplify these losses to appear similar to those observed for thin (<200 nm) h-BN films in the
same work. As no data were available on the losses of the z vibrational mode for thin films, we assume that they
increase in proportion with the x, y losses, as described in the next section.

The model Cai “clean” was used to produced dispersion plots where we have matched the measured plasmon
wavelength; its low level of dielectric loss aids the visibility of the modes. This last model, Cai “damaged”, was used
in our calculations of plasmon damping.

B. h-BN losses in thin films

Caldwell et al. have noticed in measuring thin h-BN films in Ref. S13 that the effective γv,l seems to be larger than
bulk. As a result our h-BN, especially the thin upper layer, may have higher losses. In Fig. S7 a comparison between
clean and damaged h-BN from Ref. S13 is made. The simulations were done using the transfer matrix method taking
into account the thickness of the flakes and the substrate and for the BaF2 substrate permittivity values from Ref. S16
are used. It is clear that the resonance linewidth reported for thicker (>200 nm) h-BN flakes becomes broadened
for thinner flakes and strongly depends on the thickness. Therefore the dielectric losses of graphene plasmons due
to h-BN heavily depend on sample geometry and surrounding flake thickness. The values used in Fig. 4 in the main
text are shown as Cai ”damaged” in Table S1. The out-of plane phonon width was estimated by using a ratio of 3.5
between in-plane and out-of-plane width as reported in Refs. S13 and S12 for both very clean mono crystalline h-BN
as well as for polycrystalline h-BN. Considering the strong thickness dependence of the phonon linewidth as seen in
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Figure S7: Comparison between measured reflection from the supplement of Ref. S13 and simulated reflection for thin h-BN
flakes. The clean h-BN uses an in-plane phonon linewidth of 0.87 meV from Ref. S13. The simulations of the damaged ones have
an increased in-plane phonon linewidth of 3.7 meV in the case of the 105 nm thick h-BN and 6.5 meV for the 60 nm h-BN.

Fig. S7 these values are realistic.
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