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Abstract. We have studied the lateral coupling between InAs/GaAs quantum dot pairs 
embedded in a field-effect structure. Quantum dot pairs and molecules have been identified by 
the correlated evolution of the Coulomb blockade features of each QD in the pair. This 
behaviour is largely distorted in the presence of resonant coupling states in the QD molecule. 
Single QD voltage evolution shows a crossover in the lineshape profile, which is associated to 
Spectral Diffusion processes due to residual charged environment. 

1.  Introduction 
In the last years great efforts have been made to study self-assembled InAs Quantum Dot (QD) micro-
Photoluminescence (μPL) [1-3]. With the help of the same μPL set up it is possible to study the 
quantum coupling between two neighboring dots (Quantum Dot molecules) [4]. Molecular coupling is 
normally identified by the anticrossing evolution of the single QD optical transitions. There have been 
proposed different self-assembled growth techniques to control the interdot distances and obtain an 
efficient coupling. They have been classified by their coupling orientation regarding growth direction. 
Stacked quantum dot samples are usually designed to produce vertically aligned QD molecules. In this 
case a field effect device is used to drive and couple the quantum levels, given that bottom and top 
QDs have different sizes. Molecular coupling on these vertical aligned systems has been demonstrated 
for electron and hole single particle states [5, 6], and even for excitons through a direct dipole-dipole 
interaction [7]. Laterally aligned QD molecules would be a more interesting system for quantum 
computing, but more difficult to produce directly by epitaxial growth techniques due to random nature 
of self assembling processes. The growth control of lateral QD molecules formation requires a more 
sophisticated technique, normally involving in situ etching methods [8].  

 In this work, we present optical signatures of single InAs/GaAs double QDs (QD pairs) grown into 
GaAs nanoholes under the influence of an external electric field. The in situ patterning procedure of 
the substrate by using the droplet epitaxy technique has permit to obtain low density QD ensembles 
with control in size and lateral configuration [9 - 11]. On these epitaxial layers, we have fabricated a 
lateral field effect device to study and control the coupling between dots as function of the applied 
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bias. We have found three optical differenced 
regimes presumably associated to 
morphological differences between the QDs of 
the pair and the coupling strength between 
them. 

2.  Sample and Experimental Set-Up: 
The sample was grown by Droplet epitaxy on a 
0.5 μm thick GaAs buffer layer. During the first 
growth process it was generated a density of 
2.108 nanoholes/cm2 with an elongated structure 
along [110] direction. After this nanohole 
formation process 1.5 monolayers of InAs was 
deposited at an As2 pressure of 10-6 Torr for the 
QDs growth. Above the QDs a 100 nm thick 
capping layer was grown. More detailed 
information about sample growth mechanism 
and parameters can be found at [11]. Figure 1 
shows the AFM image of a QD pair grown by 
the described procedure. Each QD in the pair 

has a mean diameter of 37 ± 4 nm and different heights with distributions centered at 5.3 ± 0.9 nm and 
6.6 ± 1.6 nm, respectively. The average separation between adjacent QDs varies from practically zero 
at the bottom up to a value close to the QD diameter. Therefore, some QD pairs could exhibit a non 
negligible molecular coupling, especially for electrons. With the aim to tune the electronic levels at 
each QD and determine the quantum molecular coupling, if existing, an Mo-Au layer have been 
deposited on top of the sample surface and a 1 μm gap was opened defining the two lateral gates to 
apply an electric field parallel to the QD pair axis ([110] direction), as illustrated in Fig. 1. 

The emission properties at the single QD level have been investigated by using a fiber based 
confocal microscope with a diffraction limited spot size (~ 1μm) running at liquid Helium 
temperature. A Ti:Sapphire laser operated at 775 nm is used as excitation source in pulsed regime (76 
MHz of repetition rate). The collected light have been dispersed by 0.3 m focal length double 
monochromator and detected by Si back-illuminated cooled CCD. Additionally, a programmable 
voltage source has been used to apply the desired voltage to the Au-Cr gate. 

3.  Results and discussion: 

3.1.  Single QD voltage sweep: 

Although the QD pair occupancy at the nanoholes is about 98% [11], we have identified several 
examples corresponding to only one single QD nucleating at the patterned nanohole. The triplet state 
from a double negative charged exciton (XT

-2) is recognised as the more intense peak at zero bias. This 
assignation is established following our previous results on these systems [9]. We have explained this 
negatively charged configuration by the electronic transfer from arsenic vacancies in the QD 
surroundings due to an incomplete Ga droplet crystallization. When performing a negative voltage 
sweep an abrupt change is observed in the lineshape of the XT

-2 optical transition, as shown in Figure 
2.a. The two observed limiting situations are shown in Fig. 2.b: two narrow Lorentzian lines (limited 
by the spectral resolution) are observed for voltages more negative than -3.4 V, whereas a broader line 
that exhibits a more complicated lineshape is observed for voltages less negative than -3.2 V, similar 
to the case described in Ref. 12. Furthermore, an energy shift of the PL peak, E0 ~ 0.5 meV (see the 
inset in Fig 2.a), appears between both situations.  Let remember that tuning the QD charge by biasing 
field effect structures produce abrupt steps in emission energy [1]. Therefore, we suggest that both 

Figure 1. (a) Sample growth structure and band-edge 
diagram of the device. (b) Optical microscopy picture from 
both Mo-Au contacts. (c) AFM picture of the 1 μm gate. (d) 
AFM picture of one QD pair from uncapped sample.
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changes in lineshape and energy transition are due to the Spectral Diffusion (SD) effect, associated to 
the fluctuating electric field of the QD charge surroundings. A similar broadening due to SD effect has 
been explained by the slow modulation limit of the motional narrowing effect [13], which in our case 
we assume to arise from local electric field fluctuations [14]. When a sufficiently negative voltage is 
applied between the gates, the electric field is high enough to empty the QD surroundings from 
residual charges, and optical transition recovers its original linewidth. However, the existence of low 
and high energy sidebands (LE-S and HE-S in figure 2. b) is normally ascribed to the emission and 
absorption of acoustic phonons [12]. We need more experimental evaluation to confirm the origin of 
this sideband in our system. 

3.2.   QD pair voltage sweeps: 

3.2.1.  Decoupling signatures. Figure 3.a shows a gray-scale plot of the photoluminescence versus 
gate voltage for a single QD pair. We identify neutral (X0), singly charged (X-1) and doubly charged 
(X-2) excitonic features from two different QDs (QDA and QDB). This identification comes from 
identical procedure at similar works, which evaluate the Coulomb blockade and Pauli blocking on QD 
states [1]. It is not detected any sign of molecular coupling between both QD states, as their optical 
transitions follows the expected Quantum Confined Stark effect for isolated QDs [1]. 

3.2.2.  Coupling signatures. Figure 3.b shows similar plot for another QD pair. In this case, the 
excitonic features are not easily identified as there are several peak assignation possibilities. However, 
following our previous discussion it is possible to identify neutral (X0 group), single charged (X-1

group), and doubly charged (XT
-2 group) optical resonances sets. However, we do not have a clear 

explanation about the origin and causes of every line in each set. The more interesting feature of this 
plot comes from the asymmetric evolution of the Stark shift at positive (~ +2 V) and negative (~ -5 V) 
voltages. It is reasonable to expect an asymmetrical evolution in molecular coupled systems, as far as 
the QD pair (at the same nanohole in our case) have slightly different sizes. In this case, it is possible 
to bring electron or hole levels into resonance by applying a negative or positive voltage, depending 
on the relative alignment of the electronic levels with the gate voltage. Moreover, conduction and 
valence bands have different band offsets, giving rise to different absolute resonant voltages for each 

Figure 2. (a) Voltage sweep from -2.5 to 4.25 V for a single QD. Inset: Peak energy crossover of the resonance. (b) 
Transition lineshape at two different voltages. 

(a) (b) 
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carrier level. Clear anticrossing features are hardly detected in lateral quantum dot molecules [4]. 
However, it has been identified molecular coupling on these systems by an anomalous excitonic Stark 
shift evolution [8]. A zoom of the black doted area in Fig. 3.b is plotted in 3.c, where we can observe a 
sigmoidal behaviour with the applied voltage between 1.7 and 2.6 V (range marked by asterisks in 
Fig.3.c). As better observed in Fig. 3.d, the PL peak energy of this optical transition follows a 
sigmoidal Stark shift variation. We suggest that both the observed asymmetrical excitonic features and 
the sigmoidal Stark shift evolution could be optical signatures of molecular QD coupling in our system 
(in some QD pairs where sizes and/or dot distance enables it). 

Conclusions 
In summary, we have studied the μPL emission properties of single QD and QD pairs grown by 
Droplet epitaxy as a function of an external electric field. We have analyzed the lineshape of single 
QD optical transitions at the crossover between narrow (Lorentzian) to a broader and more 
complicated profile, which has been associated to a Spectral Diffusion mechanism. Molecular 
coupling on QD pairs has been evaluated by μPL voltage sweeps. We have found optical signatures 
from decoupled QD pairs, but also to some QD pair exhibiting molecular coupling. It has been 
deduced from its asymmetrical behaviour with respect to the applied voltage and the sigmoidal Stark 
shift evolution. 
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